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Abstract1

We model dynamic behaviour of natural gas consumption using continuous-time2

stochastic models which offer a wide set of choices for the drift and volatility terms3

and can be used for pricing of contingent claims on natural gas consumption as they4

yield analytical solutions for any forecast horizon. We apply One-factor mean-reverting5

and stochastic Gompertz diffusion models for the empirical analysis of daily natural6

gas consumption in Istanbul, Turkey. Both models perform well in reflecting the em-7

pirical properties of consumption data including stationarity, strong seasonality, mean8

reversion, and serial correlation. Based on the comparisons of forecast performances,we9

show that One-factor mean-reverting process improves upon the Gompertz diffusion10

process due to different specifications of the drift term and estimation procedure.11

Keywords: Gompertz diffusion process, One-factor mean reverting process, Natural gas12

consumption, forecasting13

14

JEL Classification Numbers: Q47, Q54, C1515

1 Introduction16

Natural gas is an energy source that exhibited an increasing share in the global energy17

consumption over the last decades. Recent developments in the gas production technologies18

pave the way to a higher share of the natural gas in total energy mix. As an emerging19
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country with growing energy needs, Turkey’s natural gas consumption has increased rapidly20

over the last two decades.121

The Turkish natural gas industry has undergone a process of reconstruction to create a22

competitive natural gas market. For this purpose, the Natural Gas Market Law, was enacted23

in 2001 which aimed to change the monopolistic structure of the market and form a more24

competitive market by establishing an independent regulatory authority, the Energy Market25

Regulatory Authority.2 Liberalization of the energy markets necessitates an accurate short26

term forecasting and demand management of natural gas. Furthermore, it is plausible to27

assume that new contingent claims on the consumption amounts or prices of natural gas will28

probably become available.29

Accurate modelling and forecasting of natural gas consumption are crucial for efficient30

management of resources and have been extensively studied in the literature. A compre-31

hensive review on modelling and forecasting of natural gas consumption is given by Soldo32

(2012. The dominant approach is to use time series models with autoregressive structure of33

natural gas consumption with/without other explanatory variables such as heating degree34

days or temperature. Ediger and Akar (2007) use autoregressive integrated moving average35

and seasonal moving average models to forecast energy demand in Turkey. Aras and Aras36

(2004) estimate aggregate natural gas demand in residential areas of Eskişehir, Turkey using37

monthly data. They estimate separate autoregressive time series models for heating and38

non-heating months. Gümrah et al. (2001) and Sarak and Satman (2003) utilize degree39

days to explain the relation between natural gas demand and temperature levels. Erdoğdu40

(2010) employs an ARIMA model to forecast natural gas demand using quarterly data over41

the period of 1988 to 2005. Liu and Lin (1991) employ multiple-input transfer function42

models to study the relationship between natural gas consumption, temperature and price43

using monthly and quarterly data for Taiwan. Sanchez-Ubeda and Berzosa (2007) devel-44

ops a flexible prediction method where the forecast is obtained by estimating the trend,45

seasonality, and transitory components. Crompton and Wu (2005) utilize a Bayesian vec-46

tor autoregressive methodology to forecast energy demand for China, including demand for47

natural gas.48

To the best of our knowledge, only the studies by Göncü et al. (2013) and Gutierrez49

et al. (2005) rely on stochastic processes driven by Brownian motion to model natural50

gas consumption. Continuous time stochastic models provide important advantages over51

statistical or econometric models. First, analytical formulas for the conditional expectation52

and variance can be derived for any forecast horizon. Second, the models can be solved53

analytically and contingent claims dependent on the path of the natural gas consumption54

can be priced relatively easily. Third, empirical characteristics of natural gas consumption55

data can be described using a large set of choices for drift and volatility terms. Therefore,56

continuous time models provide an important alternative for energy modelling. Additionally,57

forecasts obtained from time series models with high-frequency data will not be reliable since58

explanatory variables such as the macroeconomic variables or temperatures are difficult to59

1See [EPDK (2012)]
2EMRA(EPDK in Turkish). See [Erdogdu (2010b)]
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predict.60

In this paper, we consider two continuous-time models used in the literature for modelling61

natural gas consumption; Göncü et al. (2013), which adopts the model in Lucia and Schwartz62

(2002), and Gutierrez et al. (2005). Our results provide important insights for future63

work aiming at extending these models to fit to empirical characteristics of natural gas64

consumption. In Section 2, we present empirical properties of data used in estimation. In65

Section 3 and 4, we discuss properties of the theoretical models considered in our analysis. In66

Section 5, we compare them in terms of their forecasting powers in capturing the empirical67

properties of consumption. Section 6 concludes.68

2 Data69

The data for natural gas consumption is obtained from IGDAS, the only natural gas70

distributor in Istanbul, Turkey, which contain 2848 daily observations of residential and71

commercial natural gas consumption in urban areas3 and the number of consumers for the72

time period between January 1, 2004 to October 18, 2011.73

Figure 1: Per-Household Daily Natural Gas Consumption
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Per-consumer natural gas consumption is plotted in Figure 1, which exhibits a seasonal74

pattern and mean reversion to the seasonal mean. In particular, the seasonal pattern and75

mean reversion are stronger during summer months of the year, where the natural gas con-76

sumption is low. During winter months, deviations are larger with high volatility around77

the seasonal pattern. Therefore, a clear seasonality with slow mean reversion is expected.78

3Industrial use of natural gas consumption is not included in the dataset.
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We also observe that holidays, including weekends, have important effects on natural gas79

consumption and thus, a holiday dummy variable is included. In addition to stationarity,80

strong serial correlation exists where the first order lag is statistically significant. We use81

the logarithm of the per-consumer natural gas consumption as our dependent variable.82

3 One-Factor Mean-Reverting Process83

Following the one-factor model in [Göncü et al. (2013)], we decompose per-consumer84

natural gas consumption Ct as:85

Ct = exp(f(t) + Yt) (1)

where f(t) is a bounded deterministic function of time and Yt is a mean reverting stochastic86

process driven by standard Brownian motion {Wt}∞0 , which is defined on the probability87

space (Ω,F , P ) with filtration {Ft}∞0 , and the initial value of the process is Ys = ys. The88

process Yt follows:89

dYt = −κYtdt+ σdWt (2)

where κ > 0 is the speed of mean reversion and σ > 0 is the volatility of the process. The90

solution of Equation (2) is given by:91

Yt = yse
−κ(t−s) +

∫ t

s

e−κ(t−u)σudWu (3)

and thus Yt ∼ N
(
yse
−κ(t−s),

∫ t
s
e−2κ(t−u)σ2

udu
)

.92

For the deterministic function f(t), we assume the following form to capture seasonality93

in natural gas consumption:94

f(t) = β0 + β1Ht +

p∑
i=1

αi sin(iwt) + γi cos(iwt), (4)

where the holiday dummy variable H(t) = 1, if date t is weekend or holiday, and H(t) = 095

otherwise, w = 2π/365, and p is the number of sine and cosine terms, which is taken as 2.96

In many developing countries such as Turkey, natural gas prices are centrally determined,97

thus fluctuations in these prices are not frequent, at least in the short run. It is feasible to98

add the logarithm of prices into Equation (4); however, we choose to leave the effect of prices99

in the stochastic part.100

The per-consumer natural gas consumption Ct is now obtained as:101

Ct = exp(f(t) + yse
−κ(t−s) +

∫ t

s

e−κ(t−u)σdWu) (5)

where f(t) is expressed as in Equation (4).102

The conditional expectation and variance of natural gas consumption with respect to the103
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filtration Fs at time t > s > 0 are given by:104

E[Ct|Fs] = exp

(
f(t) + (ln cs − f(s))e−κ(t−s) +

1

2

∫ t

s

e−2κ(t−u)σ2
udu

)
(6)

and105

var(Ct|Fs) =

[
exp(

∫ t

s

e−2κ(t−u)σ2
udu)− 1

]
× (7)

exp

[
2f(t) + 2(ln cs − f(s))e−κ(t−s) +

∫ t

s

e−2κ(t−u)σ2
udu

]
For the case of constant volatility, conditional mean and variance simplify to:106

E[Ct|Fs] = exp

(
f(t) + (ln cs − f(s))e−κ(t−s) +

σ2

4κ
(1− e−2κ(t−s))

)
(8)

and107

var(Ct|Fs) = exp

(
2f(t) + 2(ln cs − f(s))e−κ(t−s) +

σ2

2κ
(1− e−2κ(t−s))

)
× (9)[

exp(
σ2

2κ
(1− e−2κ(t−s)))− 1

]
,

respectively.108

In our empirical tests, we assume a constant volatility and use Equations (8) and (9)to109

obtain confidence intervals for our forecasts.110

3.1 Estimation of Model Parameters111

We specify natural gas consumption as an Autoregressive Distributed Lag (ADL) model112

with lags of deterministic components and the first order lag of consumption. By substituting113

f(t) in Equation (1) and discretizing Equation (2),we obtain:114

ln(Ct) = zt = β0 + β1Ht +
2∑
i=1

αi sin(iwt) + γi cos(iwt) + Yt (10)

115

Yt = φYt−1 + ut, ut ∼ N(0, σ2) (11)
116

zt = φzt−1 +H(Φ, xt)− φH(Φ, xt−1) + ut − ut−1 (12)

where H is a function of the vector of explanatory variables xt and vector of parameters117

Φ, and zt is the dependent variable. The parameters are estimated simultaneously by using118

non-linear least squares procedure and the mean reversion parameter is given by κ̂ = 1− φ̂.119
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Table 1: Estimated parameters for the One-Factor Mean Reverting process (all parameters
are significant at 95% confidence level)

β0 β1 α1 α2 γ1 γ2 κ σ
0.960 -0.115 0.508 0.028 0.934 0.046 0.096 0.134

4 Gompertz diffusion process120

The stochastic Gompertz diffusion process has two versions as the Homogenous, which121

implies the use of only the consumption data, and the Non-Homogenous case, which implies122

the use of other exogenous factors. Following the study by [Gutierrez et al. (2005)], the123

stochastic Homogenous Gompertz diffusion model is expressed as4:124

dCt = (α− β lnCt)Ctdt+ σCtdWt, Cs = cs (13)

where Ct is the natural gas consumption at time t, and Wt is standard Brownian motion125

process defined on the probability space (Ω,F , P ) with filtration {Ft}∞0 . By applying Itô’s126

formula to the transformation eβt lnCt and denoting γ = α− σ2/2, the solution of Equation127

(13) is obtained as:128

Ct = exp

(
ln(cs)e

−β(t−s) +
γ

β
(1− e−β(t−s)) + σ

∫ t

s

e−β(t−τ)dWτ

)
. (14)

Then, the conditional expectation under this process is given by:129

E[Ct|Fs] = exp

(
ln cse

−β(t−s) +
γ

β
(1− e−β(t−s)) +

σ2

4β
(1− e−2β(t−s))

)
, (15)

which is used to forecast the natural gas consumption.130

4.1 Estimation Of Model Parameters131

In the study by [Gutierrez et al. (2005)], the likelihood estimators of the drift parameters,132

a and b in Equation (13) are given as:133

α̂ =

(∫ T
0

log(Ct)
2dt
)(∫ T

0
dCt

Ct

)
−
(∫ T

0
log(Ct)dt

)(∫ T
0

log(Ct)
Ct

dCt

)
T
∫ T

0
log2(Ct)dt−

(∫ T
0

log(Ct)dt
)2 , (16)

4To simplify notation, we denote volatility by σ for both models even though two models does not
necessarily have the same volatility.
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and134

β̂ =

(∫ T
0

log(Ct)dt
)(∫ T

0
dCt

Ct

)
− T

(∫ T
0

log(Ct)
Ct

dCt

)
T
∫ T

0
log2(Ct)dt−

(∫ T
0

log(Ct)dt
)2 , (17)

respectively. As stated in [Gutierrez et al. (2005)], the integrals can be written as Riemann135

sums by applying Itô’s formula and evaluated numerically with the trapezoidal rule. We also136

follow this approach to obtain the estimators of α and β.137

The volatility σ is estimated by:138

σ̂ =
1

T − 1

T∑
t=2

|Ct − Ct−1|√
tCtCt−1

. (18)

As an alternative estimation method, we discretize the stochastic differential equation139

given in (13) as:140

lnCt+1 = ω0 + ω1 lnCt + ηt, ηt ∼ N(0, σ2∆t), (19)

where η ∼ N(0, σ2∆t) denotes the noise component. This equation can be considered as141

a least-squares fitting problem where ω0 = a∆t and ω1 = 1 − b∆t. Equation (19) can be142

rewritten as:143

Ct+1 = eω0+ηtCω1
t (20)

and144

E[Ct+1|Ft] = Cω1
t exp(ω0 +

σ2∆t

2
) (21)

Similarly, for any forecast horizon h:145

E[Ct+h|Ft] = C
ωh
1

t exp(ω0

h∑
i=1

ωi−1
1 +

σ2∆t

2

h∑
i=1

ωi−1
1 ) (22)

Estimated parameters a, b and σ are given in table below.

Table 2: Estimated Parameters for the Homogenous Gompertz Diffusion Model (all param-
eters are significant at 95% confidence level)

Likelihood Estimators
α β σ

2.0765× 10−5 3.3486× 10−5 0.0040
Least Squares Estimates
α β σ

0.0151 0.0166 0.0040

146
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4.2 Gompertz Diffusion Process: Non-Homogenous Case147

[Gutierrez et al. (2006)] generalize the model in [Gutierrez et al. (2005)] by including148

exogenous factors to the model in Equation (13). They specify [Gutierrez et al. (2006)], the149

Non-Homogenous Gompertz diffusion model as:150

dCt = (h(t)− β lnCt)Ctdt+ σCtdWt, Cs = cs. (23)

Possible exogenous factors that affect growth of natural gas consumption are included as a151

time dependent function in h(t) = α0 +
∑q

i=1 αigi(t) where gi(t) (exogenous variables) are152

continuous functions (w.r.t. to time) in [t0, T ]. W (t) is a standard Brownian motion process.153

The parameters β, σ, and αi for i = 0, 1, 2, ..., q are time-independent and should be154

estimated from the data using Maximum Likelihood Estimation (MLE). By applying Itô’s155

formula to the transformation yt = eβt log(Ct), the solution of Equation (23) is obtained as:156

Ct = exp

(
e−β(t−s) log(Cs) +

∫ t

s

(h(τ)− σ2/2)e−β(t−τ)dτ + σ

∫ t

s

e−β(t−τ)dWτ

)
(24)

The conditional expectation of Ct becomes:157

E[Ct|Fs] = exp

(
log(cs)e

−β(t−s) +
α0 − σ2

2

β
(1− e−β(t−s)) +

σ2

4β
(1− e−2β(t−s))

)
·

exp

(
q∑
i=1

αi

∫ t

s

gi(τ)e−β(t−τ)dτ

) (25)

Again, we can discretize the stochastic differential equation given in (23) as:158

lnCt+1 = a0 +

q∑
i=1

aigi(t) + β lnCt + ηt, ηt ∼ N(0, σ2∆t) (26)

where a0 = α0∆t, ai = αi∆t, b = (1− β∆t). Equation (26) can be written as159

Ct+1 = eh(t)∆t+ηtCb
t (27)

and160

E[Ct+1|Ft] = Cα1
t exp(α0 +

σ2∆t

2
) (28)

Similarly, for any forecast horizon h:161

E[Ct+h|Ft] = C
(1−β∆t)h

t exp(h(t)∆t
h∑
i=1

(1− β∆t)i−1 +
σ2∆t

2

h∑
i=1

(1− β∆t)i−1) (29)

Using the above estimators, the estimated parameters are given in table below.162
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Table 3: Estimated Parameters for the Non-Homogenous Gompertz Diffusion Model (all
parameters are significant at 95% confidence level)

Likelihood Estimators
α0 α1 α2 α3 α4 β σ

0.1094 6.9415 -2.5431 0.1965 -0.0614 0.1185 0.0234
Least Squares Estimates

α0 α1 α2 α3 α4 β σ
0.1028 6.5412 -2.3281 0.1843 -0.0541 0.1114 0.1445

5 Empirical Results163

We evaluate forecasting performances of the two stochastic models using the formulas for164

the conditional expectations and variances which are used to obtain confidence intervals for165

our point forecasts. In this section, we implement the backtesting method for three different166

forecast horizons: daily, weekly and monthly. Observations from initial two-years period is167

used for the estimation and the method is applied for the remaining data points by iteratively168

expanding the estimation window by one sample at a time. Table 4 presents the Relative169

Mean Square Errors (RMSE) obtained from the backtesting method.170

Table 4: Comparison of RMSE’s for the considered stochastic models: One-factor mean
reverting stochastic process versus the Gompertz diffusion process

One-Factor Mean-Reverting Process
Daily Weekly Monthly
0.0176 0.1230 0.2194

Homogenous Gompertz Diffusion Model,
Likelihood Estimators

Daily Weekly Monthly
0.0201 0.1186 0.4595

Least Squares Estimates
Daily Weekly Monthly
0.0202 0.1114 0.4316

Table 4 shows that both non-homogenous Gompertz diffusion and One-factor mean re-171

verting processes improve upon the fit of homogenous Gompertz diffusion process, especially172

for longer forecast horizons, with lower Relative Mean Square Errors (RMSE).Furthermore,173

including sinusoidal variables as exogenous factors increases prediction powers of the mod-174

els(at the monthly horizon, 0.2194 in the One-factor mean-reverting process and 0.2003 in175
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Table 4: Continued.
Non-Homogenous Gompertz Diffusion Model,

Likelihood Estimators
Daily Weekly Monthly
0.0208 0.1210 0.2003

Least Squares Estimates
Daily Weekly Monthly
0.0221 0.1931 0.3782

the Non-Homogenous Gompertz Diffusion model), and the role of deterministic trends be-176

come more pronounced at longer horizons. Another significant difference in RMSE’s stems177

from the estimation method, as we observe that likelihood estimators perform better in the178

backtesting procedure, hence provide more reliable forecasts.179

6 Conclusion180

In this paper, we employ and compare two stochastic diffusion models used in the liter-181

ature aiming to explain the dynamic behaviour of natural gas consumption, the One-factor182

mean-reverting and stochastic Gompertz diffusion models. We apply our methodology to183

model and forecast daily natural gas consumption in Istanbul, Turkey. We compare forecast184

performance of both models using backtesting method. We show that the One-factor mean185

reverting process improves upon the fit of homogenous Gompertz diffusion model, especially186

for longer horizons. Model selection mainly depends on the specific area of application. For187

example, in the context of pricing, obtaining accurate daily consumption predictions is more188

important since daily settlement amounts are usually used in futures contracts or options.189

On the other hand,in the context of demand estimation which represent the aspect of gas190

suppliers or governmental institutions, monthly predictions can be more important in which191

case the Non-Homogenous Gompertz Diffusion model seems to perform better than the other192

models, especially when likelihood estimators are used for the sample period that we have193

chosen.194

The proposed approach can be generalized to include a noise term that is driven by more195

general processes such as Levy process. Alternatively, the fit of the seasonality function196

can be improved by the use of non-parametric estimation techniques. The mean reverting197

stochastic process used in this paper leads to an AR(1) process in residuals. However, our198

modelling approach can be generalized to include higher order serial correlation in the resid-199

uals, which can be modelled via continuous autoregressive processes. Another interesting200

implication of our model is that contingent claims can be defined with respect to the natural201

gas consumption and priced within the same framework.202
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