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Abstract

I empirically investigate the non-linear relationship between inequality and innova-

tion in a Schumpeterian setup where growth is expressed by the rate of innovations.

In this framework income distribution plays a role in determining the dynamic mar-

ket sizes for innovators and therefore is a major determinant of growth. By using

two new cross-country inequality data sets, I find support for an inverted U-shaped

relationship between inequality and innovative activities. This result is robust to two

common inequality definitions and several parametric and non-parametric estimation

procedures.
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1 Introduction

Since Kuznets’ (1955) seminal work, one of the widely researched and documented phenom-

enons of the late 20th century has been the relationship between inequality and growth. In

this literature, inequality affects growth through either efficiency losses embedded in redistri-

bution, or through loss of resources and productive capacity due to rent-grabbing behavior in

social conflicts induced by inequality. Whereas there are ample empirical studies which test

such links, there have been very few works that investigate the effect of inequality on growth

through technological progress. This is surprising since the need for such investigation is

called for on several grounds.

First, one might argue that accelerated technological progress is the main source of growth

in the long run, because it channels resources towards more efficient production and thereby

releasing them. On this reason alone, it seems natural to study the effect of inequality on

innovation besides income growth to get a better understanding of how income distribution

affects growth process. A relevant framework is the Schumpeterian setup where growth is

achieved through the arrival of new and more efficiently produced goods. Inequality not

only affects market sizes for new goods and profitability of efficient firms, but also income

growth through ownership facility in a dynamic general equilibrium context. Second, as

recent research has shown, inequality might not be exogenous to technological progress, and

technological progress might not be exogeneous to inequality. An increase in the supply

of skilled labor, for instance, might direct the technological progress to be skill-biased1.

Whereas the increase in wage inequality as a result of technological progress has been widely

researched and documented, the reverse link has rarely attracted attention and the empirical

research has mostly ignored the endogeneity problem. Third, empirical studies which look

at the effect of inequality on growth, have provided weak support and more often than not

1Whether the information technology revolution directly lead to rising inequality favoring the skilled, or
the increased supply of skilled workers induced skill-biased technological change rising inequality, is still a
puzzle. Nevertheless,the implications on inequality remain the same. See Acemoglu (98), Galor and Moav
(00) and Violante (01) for respective arguments.
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conflicting answers2. Even though some of this confusion can be attributed to the problems

with data, the sign of the relationship is not clear because results are not robust to estimation

techniques or inequality indices3. And finally, the observation that widening inequality is

generally coupled with accelerated technological progress indicates that a Kuznets type of

nonlinear relationship might be at hand. This requires a different approach to the estimation

problem.

In this paper, I argue that an alternative empirical investigation based on Kuznets’

idea and the Schumpeterian hypothesis might explain the incompatible empirical evidence.

Assuming technological progress is driven by innovations and innovations are determined by

the demand structure based on the underlying income distribution, this paper empirically

investigates how inequality affects the innovative activity in a cross-country setting. Using

two new data sets on inequality, I estimate several dynamic panel data models, including a

non-parametric setup, to test the validity of the hypothesis that innovation and inequality are

negatively related at high levels of inequality and positively related at low levels of inequality.

The main conclusion is that the relationship between innovative activity and inequality can

be described by a Kuznets type inverted U shape. This finding is also consistent with recent

theories of inequality and growth4.

An inequality-determined demand structure can be described by the distribution of de-

mand across goods at a given time as a consequence of the underlying income distribution.

Such a demand distribution can be easily found , when one assumes people have hierarchic

preferences, which ranks goods in an order in such a way that the highest goods are the most

2Among the many conflicting recent reports one can cite Forbes (2000) who argues that the relationship
between inequality and subsequent growth is positive at least in the short run. Barro (2000) finds a negative
relationship between inequality and growth in developing countries and a positive relationship between
inequality and growth in developed countries. Banerjee and Duflo(2003) argue that fitting linear models is
inappropriate for explaining this relationship. They argue that any change in inequality will cause subsequent
growth to fall.

3Deininger and Squire (1997) have provided an extensive data set on inequality used in most of the
subsequent studies. Atkinson and Brandolini(2001), Banerjee and Duflo(2003), Forbes(2000), Dollar and
Kraay(2001) and Galbraith and Kum (2003) argue that the Gini coefficients in this data set are not fully
reliable.

4See Murphy, Shleifer and Vishny(1989), Baland and Ray(1991), Zweimuller(2000), Benhabib(2003).
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luxurious and the lowest are the most basic ones. In a Schumpeterian setup, Engel’s law

gives us a first clue as to what the sources of discrepancies between cross-country empirical

findings might be. When people have hierarchic preferences, they first spend proportionally

more on new and efficiently produced goods as their incomes rise. At the top of hierarchy,

however, there are luxuries which are produced by more traditional and inefficient methods

because of chronic low demand. In a society, where assets are highly concentrated, a re-

distribution might increase growth if it increases the total demand for innovators. Suppose

the growth rate is determined by the number of new goods or new firms entering into the

monopolistic sector. The entry rate into the monopolistic sector, where new goods are pro-

duced through R&D, is higher if the firms face a demand increase in the near future as a

result of decreasing inequality. One such case is a redistributive scheme which makes poor

just rich enough to afford the innovators’ product - maybe now maybe in the near future -

without making the rich poor enough such that the rich forgoes consumption of the inno-

vators’ product today. This is, in effect, a Pareto improving allocation in which resources

are freed up to be used in the most efficient sector. Such a scenario is most likely to occur

when inequality is already high. On the other hand, if the rich becomes just poor enough

such that the demand for innovators’ product falls, reducing inequality might further hurt

growth. The latter is likely to occur when the inequality is already low. Moreover, if the low

inequality is coupled with a high purchasing power, a further decrease in inequality shifts

resources away from efficient production to other areas such as luxuries causing inefficiencies

in production. This analysis suggests that the relationship between inequality and innova-

tion might be described by an inverted U - shape. A theoretical background for this type

of model can be found in Foellmi and Zweimüller (2005) where a higher initial demand for

an innovator increases the likelihood that it will innovate.

The argument, that luxury producers are less efficient than the monopolists, deserves

some discussion. In general, one can assume that the level of competition among luxury

producers is lower which lead to inefficiencies in the production of such items. Moreover,

the markets for luxury goods have been traditionally small and the demand rather inelastic,
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hence there are overall less incentives to innovate. The link between competition and efficient

production is highlighted by a recent line of research emphasizing the role of mergers in

monopolistic industries in increasing efficiency by reallocating resources to the more efficient

R&D sector5 Since the high end producers have little incentive to form mergers because of

brand protection concerns, they allocate less resources to R&D among other factors.

Given the above setup, the relation between innovation and inequality is expected to be

negative at high levels of inequality, and positive at low levels of inequality. In addition,

since high incomes are generally associated with lower inequality and vice versa6, we can

expect that the inequality - growth relationship to be positive in rich countries, and negative

in poor countries as shown by Barro(2000). The implication of the above analysis is that

the inequality-growth relationship is inversely U-shaped.

In the light of this discussion it is natural to look at the effect of inequality on the

level of innovations before looking at growth, especially if the aim is to test these theories

within a Schumpeterian context in which new technologies are embodied in new goods.

Sedgley (2006), for instance, finds that innovation is a major factor in explaining the growth

of U.S. economy. This approach is rarely taken in the empirical literature where most

studies link inequality to the growth of real gross domestic product per capita. The effect

of inequality on growth has been both theoretically and empirically studied by previous

researchers extensively albeit inconclusively7. The effect of inequality on the level innovations

has also been theoretically analyzed in the literature as in Murphy, Shleifer and Vishny (1989)

and Foellmi and Zweimüller (2005). However, within the set of models where innovation is

the source of growth, effect of inequality on innovation has rarely been empirically studied.

The only work, that the author is aware of is by Weinhold and Reichert (2005) who look

at the effect of the size of the middle class on innovations by controlling for institutional

features. This paper differs from Weinhold and Reichert’s paper in several respects. First,

5See Jovanovic and Rousseau (2001), Carol and Hanan (2000), Faria(2002)
6The empirical support for this association is extensive. See Galbraith(2002), for instance.
7For a survey of this literature see Aghion,Caroli, and Penalosa (1999)
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I particularly focus on non-linearity as predicted by the previous theoretical models on

inequality and growth. Second, due to the endogenous nature of inequality I specify the

arrival of innovations as a non-parametric Poisson process. Third, I use a different and

larger data set which includes several inequality definitions such as a Gini coefficient and

Theil index as opposed to just the size of the middle class. In this paper, the demand for

innovations is not solely determined by size of the middle class but also how relatively rich

the countries are compared to others as well as their innovative capacity.

During 1980s there has been a worldwide increase in inequality which is linked to the

information technology revolution by subsequent research. One implication of this phenom-

enon for empirical study is the fact that skilled-biased technological change will increase

both inequality and innovative activities causing a spurious relation between them. This

type of endogeneity is not adequately addressed in the previous literature linking inequality

to growth. Moreover, each country has its own institutions and innovation policies which

would play a role in the amount of innovations. I address these issues by employing several

methods. First, by making use of robust panel data techniques, specifically a GMM esti-

mation method by Arellano and Bover(1995) and Blundell and Bond (2000) and a Kernel

density estimator by Hausman and Newey (1995), I control for the endogeneity and fixed

effects. Second, in line with the traditional modeling of innovations, I introduce a hazard

model to estimate arrival of innovations as determined by the underlying income distribution

to check the robustness of the empirical model. Finally, I estimate non-linear specifications

within the original and the non-parametric setup.

The difficulty with interpreting any demand based model of innovation is to determine

whether innovative activity is pro or anti-cyclical, and whether the changes in demand are

exogenous to the process of producing and using innovations. This is also important in de-

termining the appropriate lag structure and the expected signs in the econometric model.

There are two main theories regarding the source of innovations. In supply push mod-

els, innovations are driven by exogenous shocks to scientific knowledge, whereas in demand
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pull models, changes in profitability stimulates investments in R&D . There is some, albeit

not strong, empirical evidence which suggests that innovations are mostly demand driven.

For instance, Geroski and Walters(1995) show evidence that variations in economic activ-

ity Granger causes changes in innovative activity but the opposite is not necessarily true.

Similarly, using Italian data, Piva and Vivarelli (2006) show that firms’ research activities

respond to sales. In line with the demand pull theory, I use demand variables to control

for innovation. Technology push theories emphasize the importance of technological oppor-

tunity to innovation, therefore today’s innovative activities at least partly determine future

level of innovation. Since the empirical support for a demand pull theory is not a strong

one, I make use of both aspects of innovative activity, i.e., both market demand variables

and lagged values for innovation are included in the empirical modeling.

The plan of the paper is as follows. In the next section I introduce the empirical issues

and the data set used. In the third section I present the empirical model and the estimation

results based on dynamic generalized method of moments (GMM) and interval location

approach. In the fourth section, I introduce nonlinearity to the model by developing a

semi-parametric hazard model. Using the hazard model and other non-linear fits to the

original model I present the parametric and the non-parametric estimation results. Section

six concludes.

2 Empirical Issues and Data

There are many potential problems with cross-country empirical work on inequality and

growth. One major problem with inequality growth regressions is the omitted variable bias

or setting up a well specified estimable model. If for instance there exists an omitted variable

which is negatively related to growth and positively related inequality (or vice versa), then

the coefficients are negatively biased (Forbes, 2000). I address this issue by making use of

a panel data where individual and time-invariant effects can be accounted and part of this
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bias can be adjusted for. Another problem is that the measurement error, if present in one

or more regressors, leads to inconsistency and least squares attenuation. It is well known

that the national reports of inequality generally underreport inequality because of surveying

problems. This is more evident in countries where inequality is high. In fact, this been a

major concern especially in studies using the Deininger and Squire (1996 and hereafter D&S)

data set. D&S has fewer than 700 observations in the high-quality subset with infrequent

observations for underdeveloped countries and there are only five countries for which D&S

has annual observations over long periods of time.8 Atkinson and Brandolini(2001) argue

that D&S fails to provide an adequate or accurate, longitudinal and cross country coverage.

Further criticisms on the Gini coefficient presented in D&S are brought forward by Galbraith

and Kum(2003). For instance, Gini coefficient in D&S does not reflect the same unit of

account, i.e., some of the samples are based on expenditure data whereas others are based

on income data. Moreover, the coverage is neither extensive nor representative. To give an

example nearly most of the countries selected belong to OECD. Some regions such as the Sub-

Saharan Africa are underrepresented in the sample. This probably has caused researchers

to develop empirical models that inherently take into account the biases associated with

surveys of inequality either by filling the gaps or restricting the data set to a more balanced

panel.9 Banerjee and Duflo (2003) advanced the models a step further by giving a theoretical

role to measurement error in inequality as a statistical determinant of inequality - growth

relationship. They argue that statistical agencies are more likely to mismeasure when their

societies are under stress and experiencing lower growth rates. One of the original aspects

of this article is the use of two new inequality data sets. The first one is based on the Theil

index reflecting industrial wage inequality(UTIP-UNIDO 2002) and the second one is based

on household income inequality (Galbraith and Kum 2003). Both data sets address many of

the problematic issues associated with the D&S "high quality" data set which is frequently

used by researchers. They are less plagued by measurement problems10 and wider in scope

8Great Britain, Bulgaria, India , Taiwan and United States
9Sala-i Martin(2002) interpolates the data and Forbes(2000) and Banerjee and Duflo(2003) restrict the

data set to five-year intervals.
10UTIP-UNIDO data set is based on the source data.
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than D&S.11

Researchers have used patents and R&D as indicators in the analysis of technical change12

In the firm level, patent numbers and R&D figures are used to study a wide variety of issues

such as the productivity effect of innovation, firm size and the nature of spillover13, whereas in

the aggregate level both measures are taken to reflect the technological capacity of industries

and countries. There has been a recent improvement in the quality of both measures as a

result of the development of measurement standards and computerization of patent offices.

Both measures capture different aspects of the innovation process. The number of R&D

employees or R&D can be viewed as resources devoted to innovative activity, whereas the

number of patents shows the results of innovative activity. The choice of patents in this paper

is not arbitrary. First, a patent is more likely to be obtained, if the innovated product faces

future competition. This is related to the future market size the firm will be facing for its

new product vis-a-vis the inequality level; an important aspect of the hypothesis this paper

is trying to prove. A patent is not the only method to protect profits, nor does it capture

all the innovation output. Nevertheless, given the active effort and trained statisticians

required to measure R&D expenditures, patent statistics are less prone to measurement

problems, especially in developing countries. Moreover, R&D statistics are not a measure of

innovation output but an input to the innovation process. The use of patents as an indicator

of innovation is not uncommon. Aghion et al. (2002) use patents as a proxy to innovation

in examining the relation between competition in the product market and innovation.

In terms of econometric modeling, the patents as an endogenous variable is also less prone

to the problems of the inequality and growth literature. There are fewer variables obviously

correlated with both inequality and the level of innovation rather than with inequality and

growth, which reduces the possibility of omitted variable bias. One can also expect less serial

11Luxembourg Income Study(LIS) and World Income Inequality Data Set(WIID) are well known alterna-
tive data sets. LIS is restricted to wealthy western countries and WIID is built on D&S data and therefore
they are not used in this study.
12See Pavitt (1985) , Griliches (1990).
13See Lach (1995)
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correlation due to business cycles in patent data than in per capita income growth data.

The main criticism of the use of patents is the fact that not all inventions will be patented.

Even though the incremental and imitative innovations represent a large and an increasingly

important part of innovation activities, they are not covered by patent statistics. The most

obvious shortcoming in this regard is the undercoverage of innovation activities in small firms.

The small firms are less likely to engage in research, but if they do, they invest more compared

to medium sized firms and less compared to large firms. In addition, other statistics suffer

also from the same type of heterogeneity. Moreover, other input variables such as R&D

expenditures do not reflect the total cost of innovation. Brouwer and Kleinknecht(1994) find

that the total product innovation expenditure to be four times the amount of product-related

R&D expenditure.

The patent data in this study are taken from industrial property statistics published by

World Intellectual Property Organization. It is the number of patents granted each year.

This data is based on direct surveys of the statistical agencies around the world and provides

coverage for over 40 years, over 100 countries and has 2504 observations. The US patent

data is obtained from Bureau of Labor Statistics and consists of non-medical patents granted

both to domestic and foreign applicants.

Inequality data is provided by the University of Texas Inequality Project. The two

inequality measures used in this paper are the Theil measure of industrial pay inequality

(Theil) by UTIP-UNIDO (2002) and the household income inequality (HCIN) by Galbraith

and Kum (2003). The first set is based on the Industrial Statistics database published

annually by the United Nations Industrial Development Organization, and it is a set of

measures of the dispersion of pay across industrial categories in the manufacturing sector
14. Overall wage inequality has been widely used as an alternative to income inequality

in the literature. Atkinson (1997) indicates that earnings and wage inequality are the main

14Note that incomes outside of manufacturing are generally not covered in this data set and transfers and
taxes are not covered at all. Therefore any changes in the structure of the employment is likely to bias the
Theil statistic.
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components of income inequality in US. The second set includes estimates of gross household

income inequality, computed from a regression relationship between the Deininger & Squire

inequality measures and the UTIP-UNIDO pay inequality measures. By controlling for

the source characteristics in the D&S data and for the share of manufacturing in total

employment, it provides over 3000 estimates which include a much larger and balanced set

for the developing countries than the Deininger and Squire data set. (156 countries, 3194

observations, 1963-1999 time-span).

The data on educational attainment comes from two sources: Barro and Lee(1997) and

World Bank. The capital per worker data comes from Easterly and Levine(1999). The final

consumption expenditures as a percentage of gdp and foreign direct investment data are

taken from World Bank Development Indicators. The price level of investment data which

is measured as the purchasing power parity of investment/exchange rate relative to United

States is taken from Penn World Table Version 6.1 (Summers, Heston and Aten 2002).

An initial look at the data is provided in Table 1 where I report mean and standard

deviation for selected variables for two benchmark years. Since the purpose of this paper is

to look at non-linearities, the data is divided into subsamples such as low, middle and high.

The choice of these intervals except inequality15 uses simple and arbitrary ranges where the

upper and lower tiles represent high and low16. Note that this table is a static picture of

the indicators and does not say anything about the link between inequality and innovation

or growth. Nevertheless, one should note that innovative activities were higher in ’high

income’ countries and lower in ’high inequality’ countries in both benchmark years. The

’medium inequality’ countries had more innovative activities than ’low inequality’ countries

in 1965 but the opposite is true in 1999 although the difference is not significant. ’High

growth’ countries had comparably less inequality than ’low growth’ countries on the average

in 1965 but not so in 1999, whereas the inequality in rich countries is also significantly lower

15The choice of low, medium and high inequality intervals is done using the interval location approach
explained in the next section.
16Even though the choice of intervals is rather arbitrary, the comparative results obtained are robust to

the changes in intervals within acceptable distances.
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in average than it is in poor countries. The ’high growth’ countries had significantly lower

innovative activities in 1999 compared to 1965. This might suggest that the ’high growth’

countries innovated in the early take off phases whereas they adopted or imitated in the later

phases.

INSERT TABLE 1.

3 The Model

Suppose the stock of knowledge in an economy is represented by the number of innovations

up to date t, n(t). Then growth of this number is represented by g =
·
n(t)
n(t) . Modeling a

growth rate of this type necessitates the calculation of the stock of knowledge in terms of

innovations17. In practical terms , this requires the calculation of innovations up to time t

for each country. One major difficulty with this approach is the lack of appropriate data

starting from a specified date of historical origin. One possible remedy is to assume that

each country initially has no stock of knowledge and do the calculations from the beginning

of the available data. However, this would be quite unrealistic considering the differences

in initial conditions between countries. Nevertheless, since each arrival adds to n(t), yearly

arrivals do represent growth of the stock of knowledge, if not the growth rate. In fact,

growth regressions on inequality have mostly used the same setup in which only changes

between two periods are recorded as growth. One can control then for the differences in

stock of knowledge or technological opportunities by using another variable such as income

per capita. One drawback with applying the traditional methodology here is that it allows

negative growth, which does not reflect the nature of knowledge creation. In a broader

view, one might also want to model the ’stochastic’ property of innovations (i.e. current

innovations being explained at least partly by past innovations). Taking into account the

17Other measures of stock of knowledge based on R&D flows and international trade exist in Coe and
Helpman(1995) and Keller (2001) which are not applicable within the context of this paper.
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nature of innovation process, we can at least control for the stock of the knowledge. In the

light of this discussion the empirical model can be written as;

yi,t = βyi,t−a + γf (hi,t−a) + δXi,t−a + αi + ηt + εi,t (1)

where yi,t is the level of innovation proxied by the logarithm of patents cited each year.

Since the number of available products is assumed to be equal to the sum of all previous

innovations, patents cited each year represent the growth of this number. f (hi,t−a) is a

function of the inequality index, Xi,t are the control variables, αi are country dummies, and

ηt are time dummies.

The first question is what should be the right set of control variables. The empirical

literature on innovations generally uses variables that capture market distortion, assuming

innovation is determined by degree of competition. In a cross-country setting, the purchasing

power parity of investment goods is such a measure. For the base specification I choose

the control variables Xt,i to be the level of per capita income GDP, capital per worker

(CPW), and the price level of investment (PPPINV). I also include the final consumption

expenditures as a percentage of GDP(FCE), the level of foreign direct investment(FDI),

and education variables. The capital per worker (CPW) is a measure of the productivity

which is correlated with level of innovation based on the assumption that R&D is capital

intensive. The expected sign is positive and significant. PPPINV is a degree of market

distortion, and along the historical lines of the innovation literature, it is included as an

explanatory variable. The link between the degree of market competition and innovations is

analyzed by several authors in the literature18. Aghion et. al. (2002) find for instance that

relationship between product market competition and innovation is an inverted U shape. The

fact that rich economies can support large markets for new products despite large differences

of wealth within their populations, might cloud any evidence on the link between inequality

and growth. To control for such market size effects I use final consumption expenditures as

18See for example Fellner (1951), Arrow (1962), Levinn and Reiss(1984), Geroski(1990), and Geroski(1995)

13



a percentage of GDP. This variable includes both government and household consumption.

The innovative capacity is also closely linked to the per capita income level (GDP). Income is

a demand variable that is correlated with innovations in a demand based analysis. Per capita

income controls for the level effects created by the cyclical nature of innovative activity.

3.1 The Linear Model

In order to facilitate the spline regressions I rewrite the model by letting f (hi,t−a)=hi,t−a.This

gives us the linear model,

yi,t = βyi,t−a + γhi,t−a + δXi,t−a + αi + ηt + εi,t

which can be estimated by the standard panel data techniques such as fixed effects19 or

GMM estimation based on Arellano and Bover(1995).

As mentioned above one of the difficulties in setting up an estimable model when using

patents as a proxy for innovation is the cyclical nature of innovative activities. In other

words, how does one interpret the signs of demand variables and/or determine the number

of lags?

First, there is a time period between a firm foresees a demand jump in the near future due

to decreasing inequality until the demand jump actually occurs. This time lag is not easy to

distinguish from the period during which a firm’s undertake of research leads to a patent and

during which direction of the cycle this activity occurs. Moreover, firms generally do not file

for patents and innovate simultaneously. If, during a recession, the value of existing profits

falls faster than the value to be attained by innovating net of research costs, then firms will

turn to R&D during cyclical downturns. This makes the innovative activity countercyclical.

This argument fails, however, when there are complementaries in innovation. Foellmi and

Zweimüller (2005) argues that more resources are diverted to research when a demand jump

19Note that if β 6= 0 then the OLS, random and fixed effects estimators are biased.
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is to occur in the nearer future. This implies that research activity and patenting are more

likely to occur in upturns. Moreover, the firms’ incentive to utilize full benefits of patenting

causes them to file before downturns.

The markets ability to absorb new markets at any time is limited. When a wave of

imitative or ’me too’ products arrive, the profitability of each of them falls during a re-

cession. Innovative activities will increase only if growth is high enough to create demand

expansion making them procyclical. Product innovations are likely to cluster during eco-

nomic booms which generate enough income to absorb these products. Finally, there are

also strong incentives to make investments in organizational capital during recessions which

reduce innovation output. Hence a cyclicality between innovations and growth is expected.

The empirical literature gives more support to the procyclical nature of innovations (Geroski

and Walters 1995). The second discussion involves the determination of the number of lags

in the empirical model. In this setup, it should not take too long for market expansions to be

exploited by innovating firms. The choice of lag length below is then a compromise between

the Akaike information criterion and the modeling criteria imposed by the procyclicality as

above. In the light of this discussion, I suggest the following linear model

PATENTi,t = β0PATENTi,t−2 + β1THEILi,t−2 + β2PPPINVi,t−2+ (2)

β3CPWi,t−2 + β4FDIi,t−2 + β5FCEi,t−2 + β6GDPi,t−2 + αi + ηt + εi,t

In Table 2, I report the linear estimation results (i.e. f (hi,t) = hi,t) using the base

specification and adding different control variables such as percentage of labor force with

a college education (SETETGR), population (POP), male secondary education (ME),and

female secondary education (FE) 20. The estimations are run for two different inequality

20The education variables are taken from Baroo and Lee(1997). Population data is taken from World
Bank.
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indices, THEIL and HCIN and using several methods.21. The coefficient of inequality22

remains negative and significant with respect to different choices of control variables and

estimation reports except in two cases.23 The estimation is repeated for different choices

of lags which do not affect the sign of inequality or other coefficients but income. With

fixed effects, the sign of income is positive and significant when I choose a lag of 5 or less

years. It is insignificant with GMM except for 3 or 4 years of lags. With pooled OLS and

random effects, the sign is positive and significant at all levels. The education variables

are insignificant and their inclusion does not have a significant effect on other variables in

almost all of the estimations, therefore they are dropped. A Hausman chi-squared test for

fixed effects based on Wald statistics with 6 degrees of freedom results in 25.32 which rejects

the random effects model.

INSERT TABLE 2.

To facilitate GMM estimation, identification of the model requires restrictions on the

serial correlation properties of the error term εt,i . In these models it is assumed that if

the error term was originally autoregressive, the model has been transformed so that coef-

ficients satisfy a set of common factor restrictions. Therefore only serially uncorrelated or

moving average errors are explicitly allowed. Generally, the εi,t are assumed to be indepen-

dently and identically distributed across individuals with zero mean, but arbitrary forms

of heteroskedasticity across units and time are also possible. The assumption of no serial

correlation in εi,t is crucial for the consistency of the estimators, since they instrument the

lagged dependent variable with further lags of the same variable, therefore they are reported

for each GMM estimation.
21See Appendix I for a brief discussion of the GMM estimator used in this study.
22Other coefficients and their statistics are given in Appendix.
23The control variables used in the estimations reported in Table 2 are as follows:
1) PPPINV, CPW, FDI, FCE, GDP
2) PPPINV, CPW, FCE, SETETGR
3) PPPINV, CPW, SETETGR
4) PPPINV, CPW, FE
5) PPPINV, CPW, ME
6) PPPINV, CPW, FE, ME
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3.2 Threshold Identification

I address the issue of non-linearity first by identifying thresholds above or below which the

sign of the relationship reverses sign. A relevant procedure is to employ spline regressions

within the established dynamic panel data methods24. In order to facilitate the spline speci-

fication, it is useful to identify the locations of the thresholds. I run spline regressions using

a dummy variable within the main specification of ( 1 ) and I estimate multiple parameters

by systematically changing the initial value of the dummy along the range of inequality

values. I expect the path of the slopes from these regressions to indicate the possible struc-

tural changes on the coefficient of inequality. Moreover, the estimated slopes from these

regressions should hint to the location and size of the ranges where inequality and growth

are positively or negatively related.

If the inequality and growth are indeed positively related as we move from complete

equality to low levels of inequality as the theory predicts, the coefficient on inequality should

be positive and statistically significant along the low inequality values. As we move further

away from equality, the slope should start to decrease, and after a certain threshold it should

become again negative and statistically significant.

I use a second approach in which I run the regressions for each interval separately and

contrast the coefficients with the full sample. I check if the coefficients obtained from these

regressions are significantly different from the ones obtained for the full sample. For instance,

I expect the slopes for the outer regions to be alternating in sign and to be significantly higher

in absolute terms than those in the full sample, if the relation between inequality and growth

is indeed non-monotonic.

I also check the consistency of the inequality coefficient by systematically changing the

size of the identified low, middle and high inequality intervals. I expect to find that as

intervals get wider, the coefficient of inequality should start to decrease in absolute terms.

24See Chong and Zanforlin(02) for a similar treatment.
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Since this methodology might be plagued by a sample selection bias, I also use a restricted

approach in which I use the full sample in all regressions but place two dummy variables

at the beginning of these conjectured intervals. I further check for consistency again by

changing the size of the intervals.

Table 3 reports the estimations using the interval location approach explained above.

I place a dummy variable to the benchmark specification (2). The initial values of the

dummy are placed along the inequality values starting from 0.022 for THEIL and 20

for HCIN which replaces THEIL in the benchmark specification. Estimation results using

fixed effects lend support to the hypothesis that as inequality increases the inequality and

growth relation reverses sign from positive to negative. The slope for the range of THEIL

values, 0.022 to 0.0325, are positive and significant. The slopes become insignificant and

negative for the THEIL values from 0.035 to 0.06 and become negative and significant again.

The striking result is that the slopes follow a smooth line monotonically decreasing from

positive to negative. If only for sample biases one would expect the slopes to remain positive

even though they should decrease. With GMM estimation the reversal of the sign remains,

although the threshold above which this change occurs is now higher. The slopes remain

both positive and significant until 0.045 and become both negative and significant at 0.075.

When HCIN instead of THEIL is used as an alternative inequality index results remain the

same. With fixed effects, the slopes remain positive for HCIN values from 20 to 32. For the

range, 41 to 56, the slopes are increasingly negative and significant which again supports the

hypothesized inverse U shape. When GMM is used, the threshold again shifts upward but

slopes follow the same pattern.

INSERT TABLE 3.

The fixed effects and GMM slope patterns for both types of inequality indices are shown

in Figures 1-4. Figure 1 shows the slopes above and below conjectured thresholds for THEIL

under fixed effects estimation . The lower end coefficients tend to drop sharply as threshold
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increases and become flat again when the threshold is further increased. The upper threshold

smoothly declines and becomes negative. The combined changes in upper end and lower

end slope coefficients support a non-monotonic, possibly inversed U-shape pattern. GMM

estimation results for THEIL are graphed in Figure 2. They show a slightly different pattern

in which the upper end coefficients decline vaguely and are always negative , whereas there

is a sharp drop in lower end coefficients.

INSERT FIGURE 1.

INSERT FIGURE 2 .

Similar results are obtained when HCIN is used instead of THEIL. Figure 3 and Figure

4 show that the drops in lower end coefficients are not smooth with occasional jumps at

the lower inequality levels. The upper end coefficients become eventually negative in both

estimation methods as the threshold is further increased.

Having established these thresholds the main equation is tested using the regression

results for each subsample as determined by above analysis against the regression results

from the full sample. All slopes are significantly different.

INSERT FIGURE 3

INSERT FIGURE 4 .

I use the identified intervals to further explore the non-linearity using the main specifica-

tion of (1) . I run both fixed effects and GMM regressions for the subsamples as determined

by these intervals and test for the differences in slopes25. These results are reported in Table

25The lower sample includes observations where THEIL(HCIN) is less than 0.033(33) for fixed effects and
THEIL(HCIN) is less than 0.045(31) for GMM. The upper sample has observations where THEIL(HCIN) is
greater than 0.06(41) for fixed effects and THEIL(HCIN) is less than 0.075(52) for GMM.
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4 and they show again a non-monotonic pattern. For the lower subsample the slopes are pos-

itively significant and for the upper subsamples they are negatively significant, except the

fixed effects estimation using HCIN. As a simple way to check for local consistency, I allow the

subsamples to change in both directions. In this case one expects the coefficients to increase

in absolute terms, if thresholds are decreased for the lower subsample or if thresholds are

increased for the upper sample. For example, if the THEIL inequality threshold is lowered

to 0.028 for the fixed effects estimator, I obtain a coefficient that is higher than the original

conjectured threshold of 0.033. Similarly, if I increase the upper THEIL threshold to 0.07

for the fixed effect estimator, I obtain a higher coefficient in absolute terms. This exercise is

repeated for GMM estimators and HCIN inequality indicator. The results are similar. The

signs of the coefficients are also as expected, i.e., for the low inequality sample, the slopes

are positive and significant in both types of estimation and for both inequality indicators.

They are also significantly different from the coefficients of high inequality sample.

INSERT TABLE 4.

Since the division of the whole sample to subsamples brings about a sample bias prob-

lem, I re-run the spline regressions using the whole sample, but placing dummies on the

conjectured thresholds. The results are reported in Table 5. By using the same locations

as in the unrestricted model, I estimate three slopes within the identified intervals. 26This

model is restricted in the sense that it is continuous across all intervals, i.e., there is no jump

in the constant coefficient. Slope 1 is the estimated coefficient from the lowest value of the

inequality index to the first threshold. Slope 2 is the estimated coefficient within the shown

interval and Slope 3 is the estimated slope between the second threshold and upper limit.

The middle columns of the left and the right hand side of the table are the identified intervals

in previous methods. Reading the table from top to bottom, we see that except the fixed

effects estimation of HCIN , the slopes within these identified intervals generally support the

previous results. Slopes are decreasing across intervals. To see if this methodology is locally

26See Appendix III for a formal presentation of the procedure.
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consistent, I increase and decrease the intervals by either keeping the lower threshold or the

upper threshold fixed. Now, reading the table from left to right it is clear that increasing

the higher threshold more often than not produces a lower Slope 3. In the same manner,

increasing the lower threshold produces a lower Slope 1 in most cases. For slope 2, the same

conclusion can not be fully confirmed. In both types of estimations using HCIN, the middle

interval slope is higher, i.e., increasing the upper threshold does not decrease the middle

slopes. The right and left columns at both sides of the table are also consistent in the above

sense; the slopes are decreasing along the inequality level.

INSERT TABLE 5.

3.3 Non-linear estimation and non-parametric methods

The purpose of this section is to investigate how much inequality can explain the evolution

of innovative activity under the hypothesis that firms globally respond directly to changes

in inequality. Specifically, the focus is on the direct effect of inequality on the nature of

innovative activity rather than the effect on growth within a Schumpeterian context. If there

is a relation between inequality and innovation, how can it be described? The empirical

modeling of innovations has generally assumed that the data generating process underlying

the arrival of patents can be described by a Poisson density. In the framework of this article

we can write this process as:

Pr(y = n | h) = ef(h)n − ef(h)

n!
(3)

where y is the number of patents, f(h) is a function of inequality level and ef(h) is the

hazard rate. In the panel data setting we can specify the first moment condition as27

27See Aghion et. al. (2005) for a similar treatment of the arrival of innovations.
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E[yit | hit] = ef(hit) (4)

Now, if we specify a parametric linear function for f(h), then we obtain the usual loglin-

ear form employed in the literature for poisson estimation by maximum likelihood methods.

The above inequality is then simply a conditional moment restriction of the classical model.

The problem here is that it is not clear that inequality is exogenous to innovation. Recent

literature consistently points out to the inequality creating effect of technological advances.

Skilled biased technological progress is shown to create inequality both within and across

industries in developed countries by several authors28 Any increase in the supply of skilled

labor might induce skill-biased technological change which then feeds back into employment

choices and causes changes in inequality (Acemoglu, 1998). Increases in the supply of skilled

labor on the other hand might be the result of sustained skilled biased technological progress

which prevents the profitability of education or the skilled wage differential to fall. This en-

dogeneity of the model necessitates a more robust procedure. A convenient way to approach

this problem is to let f(hit) be a non-parametric specification under which it identifies

the innovation hazard. This specification permits dependence of the parameters in f(hit) on

other unknown functions as well as on unobserved variables.

Given the above setup, the data in hand is treated like a micro data panel, although the

individual firm characteristics are absent. It should be noted that the differences among firms

are ignored because of the extensive data requirement in a cross-country setup. However,

country effects, time effects or other policies can be fully captured by the model. To further

avoid spurious correlation, we can also control for time and individual country effects by

estimating the following:

E[yit | hit, xit] = ef(hit)+x
0
itβ (5)

28See Aghion(2001) for a version of this argument in a Schumpeterian setup.
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where xit represents time and country dummies. This new moment condition is now semi-

parametric in the sense that f(hit) is unknown and can be estimated in several ways.

To estimate the model, I first implement the Kernel method discussed in Robinson(1988)

and applied to estimation of demand curves in Hausman and Newey(1995)29 .The results of

this estimation for THEIL index are shown in Figure 5 and for the HCIN index in Figure

6.30. In both cases an inverse U relation is again evident. In Figure 7., I compare a quadratic

specification for f (hi,t) in the base specification(1) and a Kernel estimation of the original

model. Note the similarity of both curves despite the fact that they are based on two different

modeling approaches31. Figure 8 shows the parametric estimation of the quadratic fit to the

original hazard model. The inverted U shape has shifted right with inequality-innovation

relationship being now negative at both ends. The coefficient of the squared term is -1.39

with a t statistic of -4.84 . The coefficient of the linear term is -0.05 with a t statistic of

0.04. Both time and country dummies are significant.

INSERT FIGURES 5-8

4 Conclusion

I study empirically the link between inequality and growth within a Schumpeterian frame-

work. This amounts to taking growth as the increase in the stock of knowledge, specifically

the number of new products. I find support for the hypothesis that inequality - innova-

tion relationship is inversely U-shaped. The innovative activities of firms which drives the

growth process depend on the demand structure vis-a-vis inequality. Departing from pre-

vious empirical literature on inequality, two new data sets were used. The overall relation

between inequality and innovation is negative and negativity result is robust to definitions of

29See Appendix IV.
30A bandwidth of 0.05 is used for the Kernel estimator
31In the quadratic fit the coefficient of the linear term is 0.136 and has a t-statistic of 2.95. The coefficient

of the squared term is -0.123 and has a t statistic of -2.03.
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inequality and estimation procedures .The non-linearity results extend to a non-parametric

and a semi-parametric setup as well. The findings in this paper overall are consistent with

recent theoretical approaches to inequality - growth relationship which generally suggest a

non-linear relationship.

I apply a systematic method which identifies the thresholds below or above which in-

novation and inequality positively or negatively related. The method involves an interval

location approach which conjectures such thresholds and verifies them by using spline GMM

regressions. I employ several estimation methods and two recent inequality indices that are

less prone to statistical problems than the widely used Deininger and Squire Data Set. An

unrestricted approach is employed by dividing the whole sample into subsamples and com-

paring the slopes between subsamples. The results obtained from the unrestricted approach

are similar to the spline method. The consistency checks are made by locally expanding

and contracting the samples and examining the resulting slopes. Since this approach brings

about a sample selection bias, I run the spline regressions for the whole sample by placing

two dummies. The results are similar to those obtained from the unrestricted approach.

Finally, I look at the effect of inequality on innovation within the empirical methodology

established in the innovation literature. Specifically, I take into consideration that patents

are count data and their arrivals can be described by a Poisson process. This hazard model

is estimated using both non-parametric and semi-parametric approaches. I compare these

results to a non-linear fit of the base model. The results point again to an inverted U shape.

By controlling for income and other institutional effects, I again find that in high inequality

countries, decreasing inequality causes more resources to be diverted to innovation, but the

same is not true for low inequality countries.

Using a cross-country data on patents has some drawbacks. For instance, countries

differ greatly with respect to their policies toward innovation, and not all innovations are

patented. Since institutions play a role in the amount of patents issued, it might be the case

that R&D expenditures is a better choice. However, in a wide cross-country study, R&D
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expenditure data may not be entirely reliable, as it requires trained statisticians to collect

such data. The author believes that patents capture the innovation output also better than

R&D expenditures, and it is overall a better proxy for incentives to innovate in an empirical

Schumpeterian setup, where new technologies are embodied in new goods and inequality

affects innovative activity through future profits vis-a-vis dynamic demand distributions.

This paper does not answer the more fundamental question if the inequality is really bad

for growth. Overall estimations point to a negative relation between inequality and innova-

tive activities and it suggests that reducing inequality is beneficial for innovative activities

especially in countries where inequality is high.

To have a better understanding of the effect of income distribution on the innovation

process a further study is needed where institutional features can be more accurately captured

and controlled for in the empirical model. As the technological gap between the leaders and

the followers declines it becomes less costly to imitate and patenting process becomes more

prone to the underlying institutional characteristics such as enforceability of property rights.

In fact, recent literature on innovations has shown some progress in this direction and to

establish a well defined theoretical link between the institutional features of innovation and

the effect of inequality on innovation might be useful.
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Appendix A. Estimation procedures

A.1. Gmm estimation for dynamic panel data

This section closely follows Doornik, Arellano and Bond(2002) The dynamic panel model

can be written as:

yit =
pP

k=1
αkyi(t−k) +Xitβ

0(L) + λi + ηt + εit, t = q + 1, ..., T ; i = 0, ..., N

where λi and ηt are respectively individual and time special effects and xit is a k vector of

explanatory variables. N is the number of cross-section observations. The idea here is if we

can find variables which are not correlated with εit we can use it as instruments for equation

in levels regardless of X 0s being correlated with error term. ∆Xi,t and ∆Yi,t are candidates

for such instruments. There are many such instruments at hand including different lags,

different combinations of lags, deviation from the means etc. which substantially increase

the information set that can be utilized thus increasing the consistency of estimates. Then

(Ti − q) equations for individual i can be written in the form

yi =Wiδ + κiλi + εi

where δ is a parameter vector including the αk’s and β’s and the time effects,ηt, and Wi

is a data matrix containing the series of the lagged dependent variables, the x0s and time

dummies. κi is a (Ti − q)× 1 vector of ones.

∧
δ =

∙µP
i
W ∗0

i Zi
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µP
i
ZiW ∗0

i
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Ziy
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¶
where

AN =

µ
1
N

P
i
ZiHiZi

¶−1
andW ∗0

i and y
∗
i denote selected transformations ofWi and yi (e.g. levels, first differences,

orthogonal deviations, combinations of first differences (or orthogonal deviations) and levels,

deviations from the means.
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A.2. Interval Location

The procedure of interval location starts by estimating the following equation

yi,t = yi,t−a + βhi,t−a+ γ1D1(h1i,t−a− ρ1) + γ2D2(h2i,t−a− ρ2) + δXi,t−a+αi+ ηi+ εt,i

where h1i,t−a > ρ1 and h2i,t−a > ρ2 and ρ2 > ρ1 by keeping ρ1 fixed and increasing ρ2

and vice versa.

A.3. Non-parametric Estimation

The idea here is to find an estimator for g(hit, xit) = f(hit) + x0itβ . First an estimator

for parameters β can be found by estimating

f(hit) = E[ln yit | hit]−E[xit | hit]β. The estimator for β. is then given by

∧
β.= [

nP
i=1

TP
t=1

τ it(hit − E(xi | hit)(hit −E(xi | hit)0]−1

×
nP
i=1

TP
t=1

τ it [(hit − E(xi | hit)(ln yit −E(ln yit | hit)]

where τ it =τ(hit) is a trimming function which leaves a .95 quantile in the sample

by leaving out the symmetric 5% of the outliers. If we want to estimate g(hit, xit) non-

parametrically we use
∧
β and a Kernel K of bandwidth ρ such that

∧
g(hit, xit) = x0it

∧
β

+
P
j 6=i
[ln yit − x0it

∧
β]Kρ(hi − hj)Á

P
j 6=i

Kρ(hi − hj). where Kρ = ρ−k−1<(v/ρ) and <(v) is a

Kernel function with the property
R
<(v)dv = 1. Interested readers can consult to Hausman

and Newey (1995) for an application to demand estimation.

Appendix B. Benchmark Coefficients

Other coefficients and their statistics in the benchmark specification are given below.
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Fixed Effects Random Effects

Coefficient t-statistic Coefficient t-statistic

PPINV -0.078 -0.98 -0.029 -1.03

FCE -0.007 -1.76 -0.011 -2.01

FDI 0.004 2.87 0.001 1.70

CPW 0.001 0.88 0.002 1.78

GDP 0.074 2.03 0.024 3.36

Appendix C. Countries

Albania Macau Nigeria
Algeria Madagascar Norway
Argentina Malaysia Pakistan
Australia Malta Panama
Australia Iraq Peru
Austria Ireland Philippines
Bangladesh Israel Poland
Belgium Italy Portugal
Bolivia Jamaica Puerto Rico
Brazil Japan Qatar
Bulgaria Jordan Singapore
Canada Kenya Slovakia
Chile Germany, E Slovenia
China Germany, W South Afric
Colombia Ghana Spain
Costa Rica Greece Sri Lanka
Croatia Guatemala Sweden
Cuba Haiti Syria
Czech Rep. Honduras Taiwan
Czechoslovakia Hong Kong Tanzania
Denmark Hungary Thailand
Dominican Rep. India Tunisia
Ecuador Indonesia Turkey
Egypt Iran United King
Ecuador Maritius United Stat
Fiji Mexico Uruguay
Finland Moldova Uruguay
France Mongolia USSR
Gabon Morocco Venezuela
Gambia Nepal Yemen S.
Germany Netherlands Yugoslavia
Korea New Zealand Yugoslavia
Kuwait Nicaragua Zambia
Latvia Luxembourg Zimbabwe
Libya
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Table 1. Selected Descriptive Statistics

Mean and Standart Deviation
Income1 Inequality2 Growth3

Low Middle High Low Medium High Low Medium High
Real GDP Per Capita

1965 1098.9 3269.5 9740.0 6178.0 2528.7 2087.2 2984.0 3511.5 3456.1
(459.4) (1124.91) (8365.03) (2902.18) (2451.39) (1791.55) (1394.6) (2770.8) (2944.4)

1999 1118.5 3359.1 13584.0 13588.6 8641.6 4373.4 5823.2 8244.4 6240.4
(493.97) (1086.48) (4735) (4524.07) (6113.45) (4555.16) (5576.4) (6522.8) (7048.4)

Real GDP Per capita growth
1965 .021 .045 .028 .049 .037 .049 -.025 .030 .083

(.070) (.056) (.039) (.028) (.072) (.064) ( 0.04) (.004) (.044)
1999 .026 .021 .028 .027 .034 .015 -.005 0.03 .055

(.033) (.035) (.031) (.027) (.020) (.044) ( .028) ( .005) (.016)
Patent

1965 4 427 936 13018 6096 8040 636 6638 7513 10659
(1530) (9343) (17401) (7513) (16448) (576) (10788) ( 12138) ( 19719.4)

1999 271 622 12281 13627 12611 5661 12456 9464 10458
(563) (1021) (30283) (15912) (25380) (22125) ( 33435) ( 11515) ( 36943)

HCIN
1965 43.4 41.0 33.1 31.8 41.3 46.8 42.6 38.3 39.4

(3.95) (5.24) (6.31) (3.88) (3.63) (1.67) (5.62) ( 7.29) ( 5.77)
1999 48.1 43.2 38.8 33.7 39.1 46.3 41.5 41.7 40.8

(3.02) (4.08) (5.87) (2.28) (3.38) (4.08) (5.67) ( 5.83) ( 5.65)
Theil

1965 .048 .046 .023 .073 .0342 .011 .053 .036 .034
(.024) (.0273) (.029) (.019) (.009) (.0045) ( .035) ( .023) ( .022)

1999 0.104 0.071 0.043 0.079 0.034 0.016 0.061 0.04 0.06
(.054) (.031) (.026) (.012) (.009) (.0018) (.027) (.027) (.028)

Number of Countries
1965 51 86 35 16 26 13 7 25 39
2000 64 95 33 8 22 21 31 25 26

1 Economies are divided according to 1999 GNI per capita, calculated  using the World Bank Atlas method. The groups

are: low income; less than$2000 , middle income; between $2,000 and $6,000, and high income; more than $6,000 
2 Inequality is taken to be low, medium or high when it is respectively less than 0.02, between 0.02 and  0.06, and higher 

than 0.06
3 Growth is taken to be low, medium or high when it is respectively less than 0.02 , between 0.02 and 0.04, and higher

than 0.04
4 Japan excluded





                  Table 2. Overall Relationship Between Income Inequality and Patents Cited

Dependent Variable : Patents Coefficient of Inequality

Model2 Pooled OLS Fixed Effects 3 Random Effects GMM(Arellano-Bond) 4

Theil 1 -14.19(1.60) -1.82(0.85) -3.9(0.85) -4.83(1.27)

2 -14.75(1.53) -2.81(0.87) -3.02(0.86) -4.96(1.28)

3 -16.71(3.51) -2.09(2.27) -5.20(2.2) -1.01(0.65)

4 -11.60(5.09) -3.37(1.98) -3.99(1.81) 2.75(2.77)

5 -12.08(5.17) -1.35(2.22) -3.98(1.35) .47(2.66)

6 -15.82(3.55) -1.91(2.22) -6.25(2.16) .45(2.68)

HCIN 1 -0.080(0.010) -0.024(0.008) -0.036(0.008) -0.041(0.014)

2 -0.100(0.010) -0.016(0.008) -0.031(0.008) -0.042(0.014)

3 -0.111(0.023) -0.023(0.099) -0.056(0.018) -0.02(0.01)

4 -0.075(0.024) -0.054(0.037) -0.059(0.018) -0.03(0.02)

5 -0.106(0.036) -0.028(0.019) -0.055(-0.028) -0.03(0.02)

6 -0.078(0.024) -0.021(0.019) -0.065(0.02) -0.045(0.02)

Number of Observations: 1285 1285 1285 10475

1 standard errors in parenthesis
2 See Appendix for the different specifications used in this estimation
3 Both country and time dummies are included
4 Both the patent and gdp and their lags are used as instruments.
5 For 3-6 the available number of observations for this type of estimation

ranges from 95  to 340



Table 3. Interval Location

Threshhold 0.022 0.024 0.025 0.026 0.028 0.03 0.0325 0.035 0.0375 0.04
Fixed Effects

Dummy THEIL 0.575 0.534 0.496 0.447 0.340 0.198 0.058 -0.063 -0.118 -0.151
(2.679) (2.652) (2.722) (2.574) (2.014) (2.270) (2.082) (-1.908) (-1.624) (-1.772)

Number of Observations    881(74 Countries) GMM (Arellano&Bover) 1

Dummy THEIL 1.101 0.988 0.964 0.953 0.863 0.652 0.454 0.241 0.129 0.06
(2.676) (2.629) (2.637) (2.646) (2.603) (2.462) (2.326) (2.175) (2.103) (2.044)

Sargan Test 0.019 0.022 0.010 0.004 0.008 0.025 0.009 0.002 0.005 0.008

Number of Observations    842(73 Countries)

Threshhold 20 23 25 26 27 28 29 31 32 33

Fixed Effects

Dummy HCIN 0.0025 0.0541 0.0431 0.0129 0.0324 0.0161 0.0039 0.0016 0.0004 -0.0002
(3.411) (5.534) (4.569) (2.889) (1.838) (1.305) (0.496) (0.307) (0.085) (-0.047)

Number of Observations    871(74 Countries) GMM (Arellano&Bover) 2

Dummy HCIN 0.0104 0.4844 0.1154 0.0408 0.0178 0.0124 0.0078 -0.0054 -0.0098 -0.0092
(5.095) (6.395) (1.294) (0.877) (0.502) (0.481) (0.479) (-0.726) (-0.784) (-0.795)

Sargan Test 0.013 0.004 0.012 0.011 0.005 0.020 0.032 0.004 0.008 0.040

Number of Observations    834 (73 Countries)
1  Autocorrelation tests of order one range from -0.082 to -0.0012. Second order autocorrelation tests range from

0.021 to 0.342
2  Autocorrelation tests of order one range from -1.173 to -0.079. Second order autocorrelation tests range from

1.021 to 2.045





Table 3. Interval Location (continued)

Threshhold 0.0425 0.045 0.0475 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

Fixed Effects

Dummy THEIL -0.181 -0.2076 -0.23815 -0.26527 -0.30531 -0.32078 -0.32399 -0.31878 -0.32482 -0.33115 -0.33712
(-1.723) (-1.477) (-1.623) (-1.573) (-1.789) (-1.969) (-1.943) (-1.989) (-2.014) (-2.431) (-2.414)

Number of Observations   881(74 Countries) GMM (Arellano&Bover)

Dummy THEIL 0.017 0.005 -0.028 -0.084 -0.176 -0.218 -0.202 -0.172 -0.180 -0.193 -0.218
(2.013) (2.003) (-1.978) (-1.935) (-1.865) (-1.832) (-1.843) (-1.864) (-1.858) (-1.847) (-1.826)

Sargan Test 0.007 0.039 0.010 0.008 0.012 0.004 0.003 0.006 0.010 0.005 0.006

Number of Observations   842(73 Countries)

Threshhold 34 35 36 37 39 41 43 48 52 54 56

Fixed Effects

Dummy HCIN -0.0062 -0.0089 -0.0088 -0.0096 -0.0126 -0.0144 -0.0163 -0.0171 -0.0176 -0.0177 -0.0179
(-1.446) (-1.616) (-1.593) (-1.972) (-1.913) (-2.343) (-3.032) (-6.502) (-6.1554) (-5.719) (-6.841)

Number of Observations    871(74 Countries) GMM (Arellano&Bover)

Dummy HCIN -0.0085 -0.0071 -0.0066 -0.0067 -0.0066 -0.0064 -0.0063 -0.0061 -0.0060 -0.0059 -0.0087
(-1.801) (-1.710) (-1.708) (-1.761) (-1.791) (-1.811) (-1.834) (-1.850) (-1.869) (-1.886) (-1.896)

Sargan Test 0.010 0.006 0.006 0.007 0.016 0.006 0.027 0.003 0.001 0.014 0.005

Number of Observations    834 (73 Countries)
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Figure 1. Interval Location: Fixed Effects.
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Figure 2. Interval Location: GMM.
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Figure 3. Interval Location: Fixed Effects.
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Figure 4. Interval Location: GMM.
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Figure 5. Kernel Regression(Gaussian Weights).
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Figure 7. Nonlinear Fit and Semiparametric Estimation with Country and Time Effects.
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